

SDB use case

- First french experience for chart adequacy on St Martin Island
- Toward a decision tool for survey planning

Clément Gallic (Shom's internship)
Sophie Loyer (sophie.loyer@shom.fr)
Thierry Schmitt (thierry.schmitt@shom.fr)

CHART ADEQUACY METHODOLOGY

DEFINITION OF THE STUDY AREA

The island of Saint Martin:

- French-Dutch island of 88 km²
- Analysis of storm Irma (5 and 6 of september 2017)

Created by OverlordQ using WikiProject Tropical cyclones/Tracks. The background image is from NASA

SDB MODEL AND ITS UNCERTAINTY

SDB calculation:

With the empirical model derived from the Lyzenga equation (Sentinel 2A image)

Validation of the SDB model:

Comparison to MBES data

	SDB model				
MBES data /	S2010-1-2-10				
SDB coherency	32010-1-2-10				
+-1m (%)	81				
+-1.5m (%)	95				
+-2m (%)	98				
Maximum error (m)	4				

AUTOMATION OF THE DISCREPANCIES DETECTION

Comparison between 2 cartographic control tools:

- CA Tools (NOAA)
- Tool from SHOM

Illustration of interpolated depths on the TIN built from the ENC

SHOM's tool characteristics:

- Limiting plateau effects
- Output file easily usable in a GIS

	// LATITUD ▼	LONGITUDE	Z_LIN	DIFF_LIN	Z_D1	DIFF_D1	Z_MIN	DIFF_MIN	Z
1	18.1191454000	-63.0535404000	6.79000000000	1.79000000000	5.00000000000	3.50000000000	5.00000000000	3.58000000000	8.58000000000
2	18.1191454000	-63.0534469999	6.68000000000	1.58000000000	5.00000000000	3.20000000000	5.00000000000	3.27000000000	8.27000000000
3	18.1191454000	-63.0533537000	6.72000000000	1.31000000000	5.00000000000	3.00000000000	5.00000000000	3.03000000000	8.02999999999

Plateau generated by an isobath

BATHYMETRIC DIFFERENCE RESULT

CHART ADEQUACY FORMULA

Reference surface [1 to max. depth]

Source: GEBCO Science Day – Kuala Lumpur, Malaysia – 5 October 2015, LT Anthony Klemm IHO - IOC - « The IHO IOC GEBCO Cookbook ». IHO Publication B-11. IOC Manuals and guides, 63. September 2018

CHART ADEQUACY FINAL PRODUCT

DISCUSSION ON THE RESULTS OF OUR FIRST EXPERIENCE

Benefits of this procedure

- ⇒ Efficient and low-cost approach to detect bathymetric changes
- ⇒ Rapid assessment of the chart by merging many sources

Importance of human analysis

- ⇒ Qualification of the SDB product
- ⇒ Building of the bathymetric difference layer (even with the automated tool)

Tool implemented in QGIS

⇒ Additional tests

Future work

- ⇒ Cross-referencing with other external information (including CSB)
- ⇒ Optimize SDB product
 - Limit the effects of the variations in sea floor conditions
 - Qualify the uncertainties

ONGOING IMPROVEMENTS IN THE SDB'S APPROACH

SDB production line since 1987

Research Project

Integration of latest technological advances

- As efficient and automated as possible
- Without mandatory need of ground control data
- With vertical uncertainties management

Upgrade Shom's production line

Promote SDB use cases

Nautical updating strategy

Reconnaissance tool

NAUTICAL UPDATING STRATEGY: SDB CONTRIBUTION

Chart evaluation

- ⇒ High revisiting capabilities with the free multi temporal images series (Sentinel 2)
- ⇒ Identify potential bathymetric changes
- ⇒ Assess the chart adequacy

Toward a decision tool

- ⇒ Develop a methodology to plan hydrographic survey campaigns
- ⇒ Combining risk assessment with standard hydrographic expertise
- ⇒ Using SDB

TOWARD A DECISION TOOL: THE DESEASION PLATFORM

DESEASION:

Multi-Criteria Decision Support (MCDA) + Geographic Information System (GIS)

 Hierarchical structuring of the decision problem including multiple objectives and multiple stakeholders

Evaluation: generation of areas / constraints expressed by the decision makers

DESEASION THE FEATURES

To date

Survey quality as a function of CATZOC

⇒ State of knowledge

Identification of deficiencies

⇒ Survey quality expected (water depths, vessel traffic, buoyage system, recommended track, safety zone)

Improvments expected with Deseasion

Interest in incorportating:

- ⇒ Seabed evolution (using SDB)
- ⇒ Ship type
- ⇒ Localisation information
- ⇒ Seabed complexity
- ⇒ Others information ...

Implementation of a Hydrographic Risk Assessement

Cost-Benefit Analysis

Overall objectives

- ⇒ Functionality : designed to be modular
- ⇒ Transparency: visualisation of each intermediate result

- ⇒ Planning: elaborates recommendations to identify priority areas.
- ⇒ Collaborative : brings together the different actors, locally or remotely

